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Abstract

The olfactory cortex is part of the mammalian cerebral cortex together with the neocortex and the hippocampus. It
receives direct input from the olfactory bulbs and participates in odor discrimination, association, and learning (Bekkers
and Suzuki, 2013). It is thought to be an evolutionarily conserved paleocortex, which shares common characteristics
with the three-layered general cortex of reptiles (Aboitiz et al., 2002). The olfactory cortex has been studied as a “simple
model” to address sensory processing, though little is known about its precise cell origin, diversity, and identity. While
the development and the cellular diversity of the six-layered neocortex are increasingly understood, the olfactory
cortex remains poorly documented in these aspects. Here is a review of current knowledge of the development and
organization of the olfactory cortex, keeping the analogy with those of the neocortex. The comparison of olfactory

cortex and neocortex will allow the opening of evolutionary perspectives on cortical development.
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ignificance Statement

\building the mammalian cortex.

The olfactory cortex is an evolutionarily conserved paleocortex implicated in odor processing. While several
studies addressed how the olfactory cortex encodes and processes odorant information, little is known
about its precise cellular origin, diversity, and identity. Unraveling where the cells are born and how they
migrate toward and settle the olfactory cortex during development is of main importance in understanding
its circuit organization and function. In addition, comparing the development of the olfactory cortex with that
of the neocortex will help in identifying common evolutionarily conserved developmental mechanisms as
well as new mechanisms specific to the neocortex that appeared later during evolution and participate in
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Introduction
Mammalian cerebral cortex comprises the neocortex,
the hippocampus, and the olfactory cortex. The olfactory
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cortex is an evolutionarily conserved paleocortex located
in the ventrolateral part of the telencephalon and shares
common characteristics with the general cortex of rep-
tiles, which are composed of three thin layers (Aboitiz
et al., 2002; Shepherd, 2011; Fournier et al., 2015). This
three-layered organization, also called allocortex, is con-
served in both the hippocampus (medial pallium deriva-
tive) and the olfactory cortex (lateral pallium derivative;
Aboitiz et al., 2002). The mammalian olfactory cortex is
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subdivided into several structures along anteroposterior
axis, as follows: the anterior olfactory nucleus, the olfac-
tory tubercle, the piriform cortex, the olfactory amygdala
[cortical amygdala and nucleus of the lateral olfactory
tract (LOT)], and the lateral entorhinal cortex (IENT; Hab-
erly, 2001; Brunjes et al., 2005; Sanchez-Andrade and
Kendrick, 2009). In contrast to the classic sensory path-
way where sensory information is first relayed in the thal-
amus before reaching the neocortex, the olfactory cortex
receives direct sensory inputs from the mitral and tufted
cells of olfactory bulb (OB) via the LOT, and is thought to
play a key role in olfaction (Wilson and Mainen, 2006;
Isaacson, 2010; Leinwand and Chalasani, 2011; Bekkers
and Suzuki, 2013). The piriform cortex is the most studied
structure of the olfactory cortex. It receives inputs from
the OB, as well as from the other regions of the olfactory
cortex cited above, and sends projections to the anterior
olfactory nucleus, the olfactory tubercle, the cortical
amygdala (CoA), and the IENT within the olfactory cortex,
as well as to the mediodorsal nucleus of the thalamus and
to several subdivisions of the prefrontal cortex [including
the infralimbic (IL), orbitofrontal, and agranual insular cor-
tices; Johnson et al., 2000; Ekstrand et al., 2001; Meyer
et al., 2006; Kerr et al., 2007]. Finally, the piriform cortex
sends consequent feedback projections to the OB (Hab-
erly and Price, 1978; Shipley and Adamek, 1984). The
piriform cortex has been shown to participate in odor dis-
crimination, association, and learning (Bekkers and Suzuki,
2013); it allows object recognition in a sensory landscape,
whose relevant perceptual dimensions are dynamically
shaped by sensory experience (Fournier et al., 2015).

While the development of the six-layered neocortex has
been extensively described, the development of the ol-
factory cortex remains poorly understood. Neurons of the
olfactory cortex seem to have multiple origins both in the
pallial and the subpallial ventricular zones (VZs; Carney
et al., 2006; Garcia-Moreno et al., 2008). Moreover, these
neurons migrate over long distances and display complex
migratory properties before reaching their final destination
in the olfactory cortex and organizing into three layers. In
this review, we discuss current knowledge on the devel-
opment and organization of the olfactory cortex and in-
vestigate the following questions. How is the olfactory
cortex specified during development? Where are the ol-
factory cortex neurons born? How do they migrate to the
olfactory cortex and form the three layers? What is known
about neuron diversity within the olfactory cortex, and
how do they encode olfactory information? These ques-
tions will be addressed keeping the analogy with the
neocortex development in order to open evolutionary per-
spectives on cortical development.

Arealization and neurogenesis

During the first 10 days of mouse embryonic develop-
ment, the pallial neuroepithelium proliferates, allowing the
exponential generation of progenies through symmetric
divisions in the VZ (Noctor et al., 2004). From embryonic
day 11 (E11), the first postmitotic neurons are produced
by asymmetric divisions, generating both progenies, which
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stay in the VZ, and neuroblasts, which migrate out of the VZ
toward the cortical surface.

Arealization of the cortex by signaling centers

Based on gene expression, the pallium is subdivided
into four major subregions, namely the medial, dorsal,
lateral, and ventral pallium; each pallial region is thought
to give rise to specific cortical structures, such as the
hippocampus, the neocortex, the olfactory cortex, and the
amygdala/endopiriform cortex nuclei, respectively (Pu-
elles et al., 2000; Yun et al., 2001). Intrinsic mechanisms
based on morphogens and signaling molecules secreted
by patterning centers allow the graded expression of
transcription factors by cortical progenitors and the de-
velopment of the different cortical fields (O’Leary et al.,
2007; Arai and Pierani, 2014). The following three pattern-
ing centers lie at the borders of the telencephalon and
participate in the arealization of the cortex: the cortical
hem (between cortical and choroidal fields); the commis-
sural plate (at the rostromedial pole of the telencephalon);
and the cortical antihem (at the pallial-subpallial bound-
ary, PSB; Mallamaci and Stoykova, 2006). The LIM ho-
meobox protein 2 (LHX2), expressed in a rostrolateral™'SH
to caudomedial*°"V gradient, suppresses hem and anti-
hem fates, both of which expanded in Lhx2 mutant mice
(Bulchand et al., 2001; Monuki et al., 2001; Nakagawa and
O’Leary, 2001; Mangale et al., 2008). The transcription
factor FOXG1, expressed in a rostrolateral™'“" to caudo-
medial“°"V gradient, suppresses hem fate and is required
for lateral fates, including that of the antihem (Dou et al.,
1999; Muzio and Mallamaci, 2005; Hanashima et al.,
2007; Shibata et al., 2008). The cortical antihem is of
major importance for the specification of the olfactory
cortex. In the following section, we will discuss the antihem
specification and  functions during development
(see O’Leary et al., 2007; Subramanian et al., 2009; Montiel
and Aboitiz, 2015 for further information about organizing
centers and arealization of the cerebral cortex).

The antihem, major signaling center for the
determination of the olfactory cortex

The antihem is located at the PSB, between the ventral
pallium and the dorsal lateral ganglionic eminence (dLGE;
Yun et al., 2001). The antihem is delineated from adjacent
regions through the exclusive expression of the transcrip-
tion factor Dbx1 in the ventral pallium VZ, as well as the
enriched expression of the secreted Frizzled related gene
sFrp2 (Kim et al., 2001; Yun et al., 2001; Assimacopoulos
et al., 2003; Medina et al., 2004). The ventral pallium and
the adjacent dLGE both display an enriched expression of
Pax6 transcription factor, which is required for the devel-
opment of lateral and ventral pallial identities (olfactory
cortex and amygdaloid complex; Stoykova et al., 1996;
Toresson et al., 2000; Kim et al., 2001; Yun et al., 2001;
Hirata et al., 2002; Tole, 2005; Pifion et al., 2008; Cocas
et al,, 2011).

The position and the specification of the antihem rely on
the expression of transcription factors Pax6, Tlx, and
Gsh2. In Pax6 mutant mice, the ventral and the lateral
pallium ectopically express subpallial markers, such as
Mash1, Gsh2, and DIx2 (Stoykova et al., 1996, 1997,
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2000; Toresson et al., 2000; Kim et al., 2001; Yun et al.,
2001). Tix mutants display a similar but less dramatic
phenotype (Stenman, 2003). In line with Gsh2 expression
in the subpallium, Gsh2 mutants display pallial gene ex-
pression in subpallial domains, such as the dLGE (Tores-
son et al.,, 2000; Yun et al.,, 2001). PAX6 is therefore
required for the expression of ventral pallium-specific
genes, while GSH2 suppresses their expression in the
subpallium (Carney et al., 2009).

The organizer function of the antihem is poorly under-
stood compared with that of the cortical hem in hip-
pocampus development (Subramanian et al., 2009). A
prominent palisade of radial glial fibers delineates the
PSB. These fibers originate in the corticostriatal junction
of the VZ and extend up to the pial surface in the piriform
cortex (Molnar and Butler, 2002). In the absence of the
antihem or in both Pax6 and Tix mutants, the radial glial
palisade is severely affected at the PSB. Moreover, Pax6
mutants show a higher number of subpallium-derived
interneurons in the cortex, suggesting a role of the radial
glial palisade in restricting tangential migration of in-
terneurons during development (Chapouton et al., 1999).
In addition, while the antihem expresses Wnt signaling
inhibitor sFrp2, Wnt7b is expressed in the dLGE adjacent
to the antihem (Kim et al., 2001; Assimacopoulos et al.,
20083). This restriction of the Wnt signaling to the subpallial
side of the PSB instructs the position of the radial glial
palisade. The antihem further expresses specific mole-
cules, like the epidermal growth factor family members
TGF-«, Neuregulin 1 (NRG1) and NRG3, and fibroblast
growth factor 7 (Kim et al., 2001; Assimacopoulos et al.,
2003). NRG1 has been shown to be essential in the
formation and maintenance of the radial glial cells (Anton
et al., 1997; Schmid et al., 2003).

Signaling centers and production of different
lineages of pioneer Cajal-Retzius cells

The three organizing centers at the pallial borders are
known to be the main origins of Cajal-Retzius (CR) cells
(Takiguchi-Hayashi, 2004; Bielle et al., 2005; Yoshida,
2006; Zhao et al., 2006). These early-born pallial cells
differentiate between E10.5 and E12.5 in mice and pop-
ulate the marginal zones of all cortical areas (Smart and
Smart, 1977; Wood et al., 1992; Marin-Padilla, 1998).
Many CR cells express Emx1 and Thr1 pallial transcription
factors (Gorski et al., 2002; Hevner et al., 2003), and
Reelin, a secreted glycoprotein that guides radial mi-
gration of neocortical neurons (Caviness, 1982; Howell
et al.,, 1997; Alcantara et al., 1998). All CR cells express
Reelin, but only hem lineage-derived CR cells express
the tumor protein 73 (p73), while antihem- or septum-
derived CR cells specifically express Dbx71. This diver-
sity of CR cell lineages may play a role in the development
of cytoarchitectonic differences between the neocortex,
the olfactory cortex, and the hippocampus (Bielle et al.,
2005).
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Migration and layer formation

Migration and layer formation in the neocortex

Neuron migration in the neocortex has been well stud-
ied. From E11, the first neuroblasts accumulate superfi-
cially in the neocortical neuroepithelium, forming the
preplate beneath the CR cell layer (Marin-Padilla, 1978;
Stewart and Pearlman, 1987; Narboux-Néme and Gaspar,
2008; Vitalis and Rossier, 2011). The preplate is a transi-
tory developmental structure in the neocortex of mouse
embryos. Axons of preplate neurons are thought to play
the role of pioneers for the development of several fiber
tracts (Supér et al., 1998). From E13, new excitatory
neurons settle the preplate, dividing it in two layers, the
marginal zone at the surface and the subplate near the VZ.
Simultaneously, the radial glia develops and its processes
reach the pial surface (Rakic, 2003; Borrell and Gotz,
2014). These radial glia processes allow the subsequent
migration of neuroblasts, which invade the cortical plate in
between the marginal zone and the subplate from E13 to
E16 (Marin-Padilla, 1978; De Carlos and O’Leary, 1992).
Excitatory neurons of cortical layers are then produced in
an inside-out manner from the deep to the superficial
layers, such that late-born neurons migrate throughout
early-born neurons (Molyneaux et al., 2007; Rakic et al.,
2009). Interneurons of the neocortex are produced in the
ganglionic eminences of the subpallium [medial gangli-
onic eminence (MGE), LGE, and caudal ganglionic emi-
nence; Anderson et al., 1997] and migrate first tangentially
and then radially to settle the cortical layers, starting from
E13 (see Fig. 2; Marin and Rubenstein, 2001; Métin et al.,
2006; Gelman et al.,, 2011). MGE-derived interneurons
born at different stages settle distinct layers of the neo-
cortex (Miyoshi and Fishell, 2011).

Early migration to the olfactory cortex

In contrast to the neocortex, the olfactory cortex is
located ventrolaterally and therefore does not line the
pallial VZ. Complex waves of cell migration from various
regions of the VZ toward the olfactory cortex have been
described in early mouse development, from E9.75 to E12
(Nomura et al., 2006; Garcia-Moreno et al., 2008). Olfac-
tory neurons generated in the dorsal part of the telen-
cephalon at E9.75 migrate ventrally and align the PSB
through Ephrin-A5 repulsive activity, which expression is
regulated by PAX6 transcription factor. These ventrally
migrating neurons differentiate both in lot cells and olfac-
tory cortex neurons (Nomura et al., 2006).

Lot cells are a specific subpopulation of Reelin™/p73™
CR cells born from E9.5 to E11.5, which were named after
their specific expression of lot7 (mGIluR1; note that lot
cells are distinguished from LOT axons by small and
capital letters, respectively; Sato et al., 1998; Jiménez
et al., 2002; Dixit et al., 2014). Proneural genes Neuroge-
nin1 and Neurogenin2 are coexpressed in dorsal and
ventral pallial progenitors and required for the differentia-
tion of lot cells (Dixit et al., 2014). These cells are pro-
duced in the whole VZ of the pallium from E9.5 to E11.5
and next migrate tangentially and ventrally toward the
cortex surface to organize themselves around the pre-
sumptive territory of the LOT at E12.5 (Tomioka et al.,
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i1 Origin in VZ Migration Destination in OCx  Cell identity in OCx
OB A P
subpallial VZ origins Tbr1 (74.1%)
; ‘o Calretinin (50%)
dLGE radial piriform cortex Reelin (23.5%)
Calbindin (11.3%)
VvLGE radial olfactory tubercle Calretinin (1.6%)
Tbr1 (1.2%)
. Calbindin (54.5%)
il Tbr1 (15.5%)
SES o olfactory tubercle Calretinin (12.6%)
tangential Reelin (7.1%)
pallial VZ origins
RDT-MDT tangential olfactory tubercle Tor1 (92.7%)
Calretinin (36.7%)
. o Reelin (18.8%)
CDT tangential piriform cortex
tangential
dorso-lateral route piriform cortex
RMTW in neocortex Calretinin (50%)

ventro-medial route
in medial wall

Tbr1 (10%)
olfactory tubercle

Figure 1. Early migration routes to the olfactory cortex (E10-E12). OCx, Olfactory cortex; PC, piriform cortex; OT, olfactory tubercle;
VLGE, ventrolateral ganglionic eminence; SES, septoeminential sulcus; RDT, rostromedial telencephalon; MDT, mediodorsal telen-
cephalon; CDT, caudodorsal telencephalon; RMTW, rostromedial telencephalic wall. In blue, OT migrating neurons; in red, PC
migrating neurons. Adapted from Garcia-Moreno et al., 2008, with permission.

2000). The migration and position of lot cells rely on the
expression of guidance cues. The neocortex displays dor-
soventral gradients of cues, which position the first steps
of lot cell migration. The subpallium expresses repulsive
cues, which prevent lot cells from invading ventral terri-
tories and maintain them superficially at the PSB. Among
these cues, Netrin-1 has been shown to locally attract lot
cells around the PSB, while Semaphorin 3F is secreted by
deep regions of the ventral telencephalon and keeps lot
cells at the cerebral surface by its repulsive action (Kawa-
saki, 2006; Ito et al., 2008). Lot cells act as guideposts for
the establishment and positioning of LOT axons, which
occur from E12.5 to E13.5 in mice (Squarzoni, 2015). At
these early stages, lot cells display long processes and
respond to electric stimulation of the OB (Sato et al,,
1998; Hirata et al., 2012). Except for lot cells, a general
role of CR cells as guideposts for axon development still
remains to be elucidated, but CR cells have been involved
in the guidance of entorhinal and thalamocortical axons
(Ceranik et al., 2000; Del Rio et al., 2002; Barber et al.,
2015). Recently, de Frutos et al. (2016) discovered a later
and unexpected role for lot cells during development:
between E13.5 and E15.5, lot cells retract their processes,
adopt a rounded-up morphology with small filopodia, and
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initiate amoeboid-like migration away from the LOT terri-
tory to dorsal neocortical regions (de Frutos et al., 2016).
This results in a doubled density of CR cells in the neo-
cortex and a 60% reduction of lot CR cell density in the
LOT territory. This reallocation of lot CR cells is regulated by
the NMDA glutamate receptor and is required for the proper
organization of neocortex layer 1 and for layer 2/3 pyramidal
cell apical dendrite morphology and spine density (de Frutos
et al., 2016). Since the olfactory cortex predates the emer-
gence of the neocortex in evolution, the lot cell reallocation
into the neocortex could reflect an evolutionary co-option of
these ancestral guideposts. In the neocortex, CR cells are
progressively eliminated by apoptosis and disappear by the
end of the second postnatal week (Del Rio et al., 1996). It is
yet unclear whether lot cells remaining in the olfactory cortex
are integrated in the olfactory network or whether they are a
transient population as well.

Garcia-Moreno et al. (2008) described other migration
maps and destination areas of olfactory cortex cells by Dil
injections at E10 to E12 followed by in toto embryo culture
for 1 day (Fig. 1). Neuroblasts are produced in the pallial
VZ of the dorsal telencephalon and of the rostromedial
telencephalic wall, as well as in the subpallial VZ of the
lateral ganglionic eminence and of the septoeminential
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Neocortex

pial surface
ECM

in chain migration

Figure 2. Comparison of developing neocortex and piriform cortex. A, Main migratory routes to the neocortex and to the piriform
cortex. i, Lateral cortical stream and modes of migration to the piriform cortex. B, Prenatal development of layers in the neocortex and
in the piriform cortex illustrated by cresyl violet stainings. Cx, neocortex; OCx, olfactory cortex; Hip, hippocampus; ECM, extracellular
matrix; MZ, marginal zone; CP, cortical plate; SP, subplate; SVZ, subventricular zone; 1Z, intermediate zone; WM, white matter; L,

layer; str, striatum; *anterior commissure. Scale bars, 200 um.

sulcus. These neuroblasts display tangential or radial mi-
gration, with some cells displaying both types of migration
sequentially. The authors showed that the cell destination
and identity in the olfactory cortex differ depending on
their origin in the VZ (Fig. 1). Surprisingly, some neurons
from the pallial rostromedial telencephalic wall VZ differen-
tiate in interneurons, while others generated in the dorsal
telencephalon differentiate in excitatory neurons. In addition,
olfactory cortex neurons from the subpallial dorsal lateral
ganglionic eminence VZ differentiate in excitatory neurons,
while others generated in the septoeminential sulcus mainly
differentiate in interneurons (Garcia-Moreno et al., 2008; Fig.
1). In which olfactory cortex layer these early cells do settle
and what are their specific functions in the circuit are not yet
elucidated. Further investigations are needed to decipher
whether cells coming from different regions in the VZ ex-
press specific lineage markers, which could help to identify
cell populations and their specific functions within the olfac-
tory cortex.

Late migration routes to the olfactory cortex

The olfactory cortex neurons born in the lateral and
ventral pallium at embryonic stages E12 to E15 in rat
embryos (corresponding to E11 to E14 in mice) have been
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initially described to migrate radially toward the surface of
the ventrolateral telencephalon (Bayer, 1986; Valverde
and Santacana, 1994; De Carlos et al., 1996). The most
described migratory route for olfactory cortex neurons is
the lateral cortical stream. This migratory route is formed
by cells migrating to the piriform cortex, the olfactory
tubercle, and the olfactory amygdala. Neuroblasts taking
this route are born in the VZ at the PSB and migrate
tangentially to the brain surface through ventral regions of
the telencephalon, and then radially to settle in the piri-
form cortex (Fig. 2). In Pax6 mutant mice (which display an
impaired PSB formation), the routing of the lateral cortical
stream toward the amygdala and the olfactory cortex is
altered (Chapouton et al., 1999; Tole, 2005). In contrast to
other known tangential migratory streams described for
interneuron migration, the neuroblasts of the lateral corti-
cal stream mainly differentiate into excitatory neurons in
the piriform cortex (Corbin et al., 2001). Bai et al. (2008)
studied this migratory stream in rat embryos by in utero
electroporation of a plasmid, allowing monomeric RFP
expression by the cells born at E13 in the VZ at the level
of the PSB. After 3 days, the cells migrate tangentially
toward ventral regions along the lateral cortical stream.
These cells settle the piriform cortex after 6 days and
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mainly differentiate into neuronal transcription factor
TBR1™" cells (Hevner et al., 2001; Bai et al., 2008). How-
ever Carney et al. (2006) showed that the identity of cells
migrating along the lateral cortical stream is not homoge-
neous. The authors described two populations of proge-
nies migrating along the lateral cortical stream in mouse
embryos: PAX6" progenies, which derive from the pal-
lium; and DLX2" progenies, which derive from the sub-
pallium. These two populations are generated at precise
and distinct temporal windows during development. From
E11.5, Pax6 is highly expressed in the pallium and at the
PSB of the VZ. At this stage, some PAX6™ cells are visible
along the lateral cortical stream and in the piriform cortex.
At E15.5, PAX6™ cells settle the piriform cortex and the
amygdaloid complex. DLX2™" cells arose from the PSB
about 2 days after PAX6" cells, at E13.5. DLX2™" cells are
actively migrating from E15.5, and by E18.5 they accu-
mulate in the piriform cortex and the olfactory amygdala.
PAX6™ cells display a migration along GFAP™ radial glial
processes found between the PSB of the VZ and the pial
surface of the ventrolateral telencephalon at E13.5 and
E15.5 (Carney et al., 2006; Fig. 2). Paradoxically, these
cells display a tangential migration along radial glial pro-
cesses. Some DLX2™ cells display migration along radial
glial processes as well, but “in chain” migration has also
been observed in this population (Carney et al., 2006; Fig.
2). The authors hypothesize that PAX6™ cells differentiate
in excitatory neurons, while DLX2* cells differentiate in
inhibitory neurons, since DLX2" cells express the in-
terneuron marker Calbindin (Ghanem et al., 2007).

Zhao et al. (2008) unraveled novel diencephalon-to-
telencephalon migrations into the septum, but also into
the piriform cortex and the amygdala. By genetically la-
beling the Foxb1 diencephalic lineage, the authors iden-
tified labeled cells from the caudal hypothalamus, which
migrate into ventral levels of the telencephalon through
the continuity between the ventral diencephalon and the
telencephalon. This migration occurs after the previously
described migratory streams: it starts from E15.5 and is
substantial at E18.5 in mouse embryos (Zhao et al., 2008).
At birth, abundant Foxb7-lineage cells migrated from the
thalamic region into the globus pallidus, the amygdala,
and the piriform cortex. These cells express interneuron
markers: most of Foxb7-lineage cells in the cortex and in
the amygdala express glutamate decarboxylase (Zhao
et al., 2008). Some Foxb1-lineage cells in the cortex were
Calretinin™, but none of them expressed Calbindin (Zhao
et al., 2008). In rodents, as a rule, cortical interneurons are
generated in the ganglionic eminences (Marin and Ruben-
stein, 2003). The migratory stream uncovered by Zhao
et al. (2008) would, therefore, allow a specific pool of
interneurons to settle the olfactory cortex during late em-
bryonic stages. Whether these interneurons settle a spe-
cific layer in the olfactory cortex or whether they are
homogeneously distributed remain an open question, as
does their specific function in the neuronal network.

Layer formation in the olfactory cortex
Reminiscent of the neocortex layer inside-out develop-
ment, injections of [*HJthymidine in E14 to E22 timed-
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pregnant female rats showed significantly more early-
born cells settled in piriform cortex deep layer 3
compared with layer 2 (Bayer, 1986; Valverde and Santa-
cana, 1994). The piriform cortex layer 2 is easily delineable
with its high density of pyramidal cell bodies. This layer
starts to organize from E16 and is well definable by E18 in
mouse embryos (Klingler et al., 2015; Fig. 2). BrdU injec-
tions at different mouse development stages and analy-
ses of cell identity at postnatal day 7 showed that cell birth
date significantly affects not only the laminar position of
cells but also their cellular fate (Sarma et al., 2011). In
mice, most layer 2 pyramidal cells are born at E12. E14-
born cells are less numerous but still differentiate mainly
in pyramidal cells. However, E16-born cells display more
heterogeneous identities, as follows: 43% differentiate in
pyramidal neurons, 24% differentiate in nonpyramidal
neurons (interneurons), and 33% differentiate in non-
neuronal cells (astrocytes; Sarma et al.,, 2011). These
results show the conservation of a fundamental develop-
mental chronology in both paleocortices and neocortices,
with the sequential generation of pyramidal cells, in-
terneurons, and glia. Labeling of cells generated at pre-
cise time points during development could be helpful to
identify genetic markers of cell populations in the olfac-
tory cortex. So far, nothing is known about the develop-
mental dynamics of layer 3 neurons.

Axons from OB mitral and tufted cells fasciculate to
form the LOT and develop collaterals, which invade the
ipsilateral olfactory cortex layer 1 from E15.5t0 E17.5ina
caudal to rostral sequence (Fig. 3; Haberly, 1983, 2001;
Haberly and Feig, 1983; Hirata and Fujisawa, 1999). Layer
1 can be divided into the following two sublayers: super-
ficial layer 1a formed by the terminals of LOT axons, which
make synaptic contacts with the apical dendrites of layer
2/3 pyramidal cells; and layer 1b, which is formed by the
apical dendrites of layer 2/3 pyramidal cells (Schwob and
Price, 1984; Suzuki and Bekkers, 2011; Fig. 3). In the adult
mouse brain, layers 1a and 1b are delineable by MAP-2
and Calretinin immunostainings, which label layer 2/3
pyramidal cell dendrites and LOT axons, respectively
(Sarma et al., 2011). At birth, layer 1 is not yet subdivided.
Layer 1a starts to be distinguishable from postnatal day 7
with visible costaining of MAP-2 and Calretinin (Sarma
etal., 2011). These observations suggest that the synaptic
contacts between LOT terminals and layer 2/3 pyramidal
cell apical dendrites develop during the first postnatal
week. During mouse embryonic development, LOT axons
develop collaterals, which first invade the CoA at E15.5,
then the piriform cortex 1 day later, followed by the more
rostrally located regions of the olfactory cortex (Hirata and
Fujisawa, 1999). These collaterals allow one LOT axon to
make synaptic contacts with layer 2/3 pyramidal cells of
different regions of the olfactory cortex (Ojima et al.,
1984). Since LOT axons develop after birth, it is rational to
assume that the maturation of the circuit is experience
dependent, as it has been well described for the primary
somatosensory barrel cortex (for review, see Vitali and
Jabaudon, 2014). It would be of interest to investigate the
consequences of postnatal odorant stimulus depletion in
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Figure 3. Piriform cortex neuron identities. A, Expression of principal neocortical layer markers in the piriform cortex. In situ
hybridizations from Allen Brain Atlas database (postnatal day 56). CC, Corpus callosum; AC, anterior commissure; Str, striatum; L,
layer. Scale bar, 200 um. B, Organization, molecular identities, and known targets of projection neurons in the piriform cortex. LOT,
lateral olfactory tract; CoA, cortical amygdala; IENT, lateral entorhinal cortex; OB, olfactory bulb; IL-mPFC, infralimbic medial
prefrontal cortex.
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the organization and maturation of olfactory cortex layer 1
connectivity.

Cell types and organization of the circuit
implicated in odor processing

Cell types and circuit organization within the
piriform cortex

In the piriform cortex, layer 2 pyramidal cells have been
initially classified into two populations based on their
distinct functions in odor processing: the semilunar and
the superficial pyramidal cells (Fig. 3). The semilunar cells
are located in the upper part of layer 2 (2a) and display a
high spine density in the distal regions of their apical
dendrites. These cells receive predominantly afferent ex-
citation from LOT axons, their activity being highly corre-
lated with OB stimulation (Suzuki and Bekkers, 2011). The
superficial pyramidal cells are located deeper in layer 2
(2b) and display basal dendrites extending into layer 3
(Fig. 3). They receive weaker afferent inputs from the OB
and stronger intracortical excitatory drive through asso-
ciative fibers, their activity therefore depending on local
feedback loops (Haberly and Feig, 1983; Suzuki and Bek-
kers, 2011; Wiegand et al., 2011; Hagiwara et al., 2012;
Fig. 3). Layer 3 is less dense in cell bodies compared with
layer 2 and is composed of deep pyramidal cells, which
receive minimal afferent inputs from LOT axons, but sub-
stantial intracortical excitation (Fig. 3).

To date, molecular identity of the distinct pyramidal
neuron within the piriform cortex has been underinvesti-
gated. Most markers defining layers in the neocortex are
expressed in the piriform cortex as well (Molyneaux et al.,
2007; Fig. 3). Upper layer markers CUX1 and CUX2
(Cubelos et al., 2010) are enriched in piriform cortex layer
2b. Some CUX2™" cells are also present in layer 3. Callosal
projection neuron marker SATB2 (Alcamo et al., 2008;
Leone et al., 2015) is expressed in piriform cortex layers 2
and 3. It would be of interest to know whether SATB2™
piriform cortex neurons project to the contralateral hemi-
sphere through the anterior commissure and are therefore
the counterparts of SATB2" neocortical callosal projec-
tion neurons. Thalamic recipient layer 4 neuron marker
RORp (Jabaudon et al., 2012) shows very weak expres-
sion in the piriform cortex. This could be associated with
the fact that piriform cortex neurons do not receive sen-
sory input from the thalamus but directly from the OBs.
FEZF2 known to be enriched in neocortex layer 5 (Rouaux
and Arlotta, 2010; De la Rossa et al., 2013), is enriched in
piriform cortex layer 2a (Diodato et al., 2016). Layer 5/6
marker CTIP2 is expressed in piriform cortex layer 2 (Fig.
3). Gene expression comparison between the neocortex
and the piriform cortex has been extensively analyzed in
the study by Luzzati (2015). He showed that the neocortex
layers 2/3 share 42% of enriched genes with the piriform
cortex, while deep layers 4 and 6 are less related to the
piriform cortex with only 29% of coexpressed genes (Luz-
zati, 2015). Piriform cortex neurons seem therefore to
express common molecular markers enriched in neocor-
tical neurons, but they do not display the same organiza-
tion within layers. Ramsden et al. (2015) developed a new
computational pipeline for high-throughput analysis and
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comparison of Allen Brain Atlas in situ hybridizations at
laminar resolution to study gene expression in the medial
entorhinal cortex (MEC). As observed for the piriform
cortex, very few genes are uniquely expressed in the
medial entorhinal cortex. In addition and contrary to the
piriform cortex, deep layers of the medial entorhinal cor-
tex are relatively similar to those of the neocortex, while
superficial layers are substantially more divergent at a
molecular level (Ramsden et al., 2015). The authors pro-
posed that the medial entorhinal cortex is a type of peri-
archicortex (paleocortex), a transitional structure between
the six-layered neocortex and the three-layered archicor-
tex (Ramsden et al., 2015).

A recent study by Diodato et al. (2016) addressed for
the first time the molecular identities of piriform cortex
projection neurons using laser capture microdissection of
piriform cortex layers and RNA deep sequencing to iden-
tify genes differentially expressed within piriform cortex
layers in combination with retrograde labeling from piri-
form cortex targets. With these approaches, they showed
that layer 2a semilunar cells project to CoA and IENT and
express Reelin and Fezf2 (Fig. 3). The expression of Reelin
by excitatory projection neurons in adult brain is specific
to the piriform cortex, since in the neocortex, Reelin is
mostly expressed by interneurons (Alcantara et al., 1998;
Pesold et al., 1998; Ramos-Moreno et al., 2006). These
Reelin™ piriform cortex semilunar cells resemble the CR
cells from the developing brain (Carceller et al., 2016).
Carceller et al. (2016) proposed that the secretion of
Reelin by upper piriform cortex layer 2 could participate in
the maturation of an immature neuron subpopulation ex-
pressing polysialylated-neural cell adhesion molecule and
Doublecortin located deeper in layer 2 (Nacher et al.,
2001; Luzzati et al., 2009; Klempin et al., 2011). Interest-
ingly, Reelin™ stellate principal cells have been described
in the adult MEC layer 2 (Varga et al., 2010). The MEC
layer 2 also comprises pyramidal cells, some of which
express Doublecortin late in postnatal development (Ray
and Brecht, 2016). A role for Reelin in the late maturation
of immature neuron subpopulations can therefore also be
considered in the case of the MEC.

Besides, piriform cortex pyramidal neurons sending
projections back to OB are located in layer 2b and layer 3,
display morphology characteristics of superficial and
deep pyramidal cells, and express Cux1 (Fig. 3). Interest-
ingly, 3D reconstruction of feedback-projecting neurons
after rabies virus injection in the granule cell layer of the
main OB showed that these cells are more numerous in
the anterior than in the posterior piriform cortex and dis-
play a nonrandom organization: piriform cortex neurons
next to one another project to similar regions of the OB
granule cell layer (Padmanabhan et al., 2016). Neurons
projecting to IL subdivision of the medial prefrontal cortex
(IL-mPFC) are mainly located in layer 2b and express
Ctip2. Moreover, a fraction of layer 2b neurons express
both Cux1 and Ctip2 and project to both OB and IL-mPFC
(Fig. 3; Diodato et al., 2016). This study points out inter-
esting differences about the molecular organizations of
the piriform cortex and the neocortex: while in the neo-
cortex, Cux1 is expressed by superficial layer neurons,
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and Fezf2 by deep layer 5/6 neurons exclusively; this
organization is reversed in the piriform cortex, where
Fezf2 is expressed in layer 2a, and Cux1 in layers 2b and
3. Moreover, Cux1 and Ctip2 are expressed in mutually
exclusive populations in the neocortex, while a fraction of
layer 2b neurons express both markers in the piriform
cortex. Interestingly, the authors further showed that in
Reelin-deficient mice, where cells of distinct layers are
intermingled across the piriform cortex, the molecular
identities of neurons projecting to the OB (CUX1*/
FEZF2~) compared with neurons projecting to the CoA
(CUX17/FEZF2™") are conserved, despite their position
defect, as described in the neocortex (Ogawa et al., 1995;
Hevner et al., 2003; Wagener et al., 2010; Boyle et al.,
2011; Diodato et al., 2016).

Odor processing in the piriform cortex

In mice, each olfactory sensory neuron in the olfactory
epithelium expresses only one olfactory receptor gene,
and olfactory sensory neurons expressing a common ol-
factory receptor send convergent projections to two
glomeruli in the main OB (Buck and Axel, 1991; Mombae-
rts et al., 1996; Malnic et al., 1999, 2010). Despite the
precise odotopic organization at these levels of the olfac-
tory circuit, individual odorants evoke a response in
sparsely and randomly distributed sets of neurons within
the piriform cortex (Rennaker et al., 2007; Poo and Isaac-
son, 2009; Stettler and Axel, 2009; Ghosh et al., 2011;
Miyamichi et al., 2011; Sosulski et al., 2011). Using single-
cell recordings from head-restrained awake mice, Zhan
and Luo (2010) analyzed odor response profiles of indi-
vidual neurons in the anterior piriform cortex. Upon odor-
ant presentation, 25% of projection neurons were broadly
excited and rarely inhibited, 25% showed no excitation
and a clear inhibition, and 50% displayed very selective
responses in terms of excitation and inhibition (Zhan and
Luo, 2010). The apparent random connections from the
OB mitral and tufted cell axons to the piriform cortex
suggest that the representations of odors in the olfactory
cortex are learned by experience. The piriform cortex
would detect odors by comparing them with a previously
acquired library of odors (Sullivan and Wilson, 2003) and
build odor units from the chemicals identified upstream in
the olfactory circuit (Johnson et al., 2000). The piriform
cortex can therefore be seen as a memory tool optimized
in the storage of odor synaptic representations (Barkai
et al., 1994).

Olfactory representations within the piriform cortex are
strongly shaped by recurrent excitatory and inhibitory
intracortical connections (Franks et al., 2011; Poo and
Isaacson, 2011). While each piriform cortex pyramidal cell
receives only 200 inputs from mitral/tufted OB cells, it
receives at least 2000 recurrent excitatory inputs (Davison
and Ehlers, 2011; Franks et al., 2011). Contrary to the
primary visual and somatosensory cortices, recurrent piri-
form cortex axons form synapses with the same proba-
bility, whatever the distance from the soma (Franks et al.,
2011). Local cortical application of baclofen, a GABAg
antagonist, abolishes intracortical associational transmis-
sion from excitatory neurons without affecting LOT-
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evoked excitatory responses (Tang and Hasselmo, 1994;
Franks and Isaacson, 2005). Using this pharmacologic
approach, Poo and Isaacson (2011) showed that the re-
cruitment of intracortical input, rather than OB input,
largely determines the strength of odor-evoked excitatory
synaptic transmission in the piriform cortex. Using a novel
transgenic mouse model allowing the expression of chan-
nel rhodopsin (ChR2) in a subset of semilunar cells, Choy
et al. (2015) showed that ChR2-expressing semilunar cells
avoid targeting neighboring semilunar cells but provide
strong monosynaptic associational excitation of superfi-
cial and deep pyramidal cells. Piriform cortex interneurons
also play an important role in odor processing. They allow
increasing discrimination of an odor and prevent nonspe-
cific excitations. Only 10% of neurons will be activated by
a given odor (Rennaker et al., 2007; Poo and Isaacson,
2009; Zhan and Luo, 2010). This signal transformation
may allow the piriform cortex to perceive a complex mix of
odors as an odorant object separated from its pure com-
ponents. Feedforward inhibition is mediated by layer 1
horizontal and neurogliaform interneurons, which receive
direct inputs from the LOT and synapse onto apical den-
drites of pyramidal cells, and are thought to play a prom-
inent role in dendritic integration of afferent input from
LOT axons in all piriform cortex excitatory cells. Feedback
inhibition is mediated by layer 2/3 bitufted regular spiking
interneurons, which receive little direct LOT input and
synapse onto pyramidal cell bodies and basal dendrites,
with deep pyramidal cells receiving the strongest recur-
rent inhibition (Stokes and Isaacson, 2010; Suzuki and
Bekkers, 2010a,b; Taniguchi, 2014; Large et al., 2016).
Semilunar cells have been shown to directly activate layer
3 GABAergic interneurons (fast spiking, regular spiking,
and neurogliaform), but neither neurogliaform nor horizon-
tal interneurons of layer 1a (Choy et al., 2015). The feed-
back inhibition would dominate the feedforward inhibition
in controlling the activation of piriform pyramidal cells
(Franks et al., 2011).

Synaptic organization of the cortex: from 3 to 6
layers

The cortical type microcircuit consists of a superficial
plexiform layer 1, where extrinsic and intrinsic projections
meet the apical dendrites of pyramidal neurons located in
deeper layers, and is responsible for the generation of
recurrent excitation and inhibition (Haberly, 1990). The
neocortex shares the basic microcircuits with the three-
layered allocortex, but displays a higher number of neu-
rons and layers (Shepherd, 2011; Fournier et al., 2015).
The neocortex could then be described as a double allo-
cortex: two couples of pyramidal cell populations, formed
by upper layers 2/3 and deeper layers 5/6, are each
located below plexiform layers 1 and 4, respectively, car-
rying extrinsic inputs (Shepherd, 2011; Luzzati, 2015). In
contrast to the dorsal cortex of reptiles or to the piriform
cortex of mammals, where sensory afferents come from
the top, in the neocortex the thalamic afferents ascend
from the depth and efferents descend through the same
layers. Both inputs and outputs have therefore potential
access to all cells in every layer (Shepherd, 2011). More-
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over, the generation of superficial and deep layers in the
neocortex allows expansion of the combinatorial possibil-
ities for intracortical and subcortical processing (Shep-
herd, 2011). Neocortex upper layers are evolutionarily the
most recent. Interestingly and counterintuitively, piriform
cortex neurons express most molecular markers found in
these neocortex upper layers. These similarities lead to
the hypothesis of an olfactory cortex-based developmen-
tal program for the evolution of neocortical layers 2/3
(Luzzati, 2015). The early neocortical column would there-
fore result of the superposition of the lateral cortex (olfac-
tory cortex) and the dorsal cortex (Luzzati, 2015). Careful
studies of piriform cortex cell lineages and neuron molec-
ular identities are needed to understand what specific cell
types are found in evolutionary “old” olfactory cortex and
neocortex layers.

Concluding remarks

The olfactory cortex, so-called “simple” cortex in the
literature when compared with the six-layered neocortex,
is often presented as a general model for cortical sensory
processing. However, the molecular identities and the
specific functions of cells composing each olfactory cor-
tex layer remain poorly described. The sequential gener-
ation of pyramidal cells, interneurons, and glia, as well as
the inside-out migration of pyramidal cells seem to be
conserved processes in both olfactory cortex and neo-
cortex during development. In the neocortex, excitatory
neurons derive from pallial VZ and migrate radially, while
inhibitory neurons derive from subpallial VZ and migrate
tangentially. This seems not as obvious in the olfactory
cortex, where some neurons from the pallium differentiate
in inhibitory neurons and some neurons from the subpal-
lium in excitatory neurons (Garcia-Moreno et al., 2008;
Fig. 1). The routes of migration toward the olfactory cortex
are particularly complicated since olfactory cortex neu-
rons have multiple origins in the VZ and some of them
migrate over a long distance to reach their final location.
These routes implicate tangential as well as radial migra-
tions. The most studied migratory stream to the olfactory
cortex is the lateral cortical stream, which is thought to be
the main stream for olfactory cortex excitatory neurons.
Some radial glial processes (radial glial palisade) have
been identified along this stream and possibly allow the
tangential-like migration of excitatory neurons along radial
glia (Carney et al., 2006; Fig. 2).

The diversity of their VZ origins implies that the cells
composing the olfactory cortex come from different cell
lineages and suggests that different cell populations
should be definable among olfactory cortex layers. So far,
two pyramidal cell populations have mainly been de-
scribed in the piriform cortex layer 2 based on their mor-
phological and electrophysiological properties (Suzuki
and Bekkers, 2011; Fig. 3). However, recent studies
started decoding the molecular signatures of projection
neurons in respect to their connectivity properties (Dio-
dato et al.,, 2016; Padmanabhan et al., 2016; Fig. 3).
Further investigations will allow understanding whether
the different VZ origins and migratory properties of olfac-
tory cortex neurons during development are correlated

January/February 2017 2017, 4(1) e0193-16.2016

Review 10 of 14

with their heterogeneous identities and functions in odor
processing. Addressing olfactory cortex neuron tran-
scriptional identities throughout development will help
to molecularly characterize cell populations with specific
properties in the olfactory cortex, in order to compare
them with populations identified in the neocortex, in terms
of layer localization, connectivity (input and output), and
function. The piriform cortex and the dorsal cortex of
reptiles (corresponding to visual cortex) both seem to
process sensory inputs as high-order cortical areas rather
than primary sensory neocortex. Computations performed
by high-order cortical areas seem therefore to be ances-
tral, while computations performed at initial stages of
neocortical processing appeared later in evolution, pos-
sibly linked to the additions of new layers (Fournier et al.,
2015). Unraveling precise neuronal origins and identities
in both the neocortex and the olfactory cortex will further
elucidate the evolutionarily conserved properties of sen-
sory cortices.
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